
WHITEPAPER MARCH  ©2022

ITTIA DB vs. SQLite
Key Critical Differences



TABLE OF CONTENTS

Introduction 
Performance, Reliability, and Scalability for the Edge 
ITTIA DB
SQLite
Data and Testing Methodology

Data Model
Testing Environment

Performance Results
Single Threaded

Insertion
Querying
Exporting

Multi-Threaded
Feature Comparison Summary
Performance Comparison Summary

Concurrency & Standards
High Availability with Database Replication
Reliable Technical Database Experts You Can Trust
Data Types
API, Utilities, and Database Cockpit
Safety and Security
How to Avoid Becoming a Database Company
Conclusion

1
1
1
2
2
2
2
3
3
3
4
4
5
7
7
7
8
9
9

10
11
13
13



ITTIA DB and SQLite are lightweight databases considered for data management 

on IoT devices. Both are embeddable for high performance and offer benefits to 

applications using time series data. Developers looking for robust data 

management options with wide integration capabilities can look towards SQLite 

or ITTIA DB for solutions to reduce database administration costs, while working 

within memory constraints and processing capabilities of edge devices.

Solutions must embed silently into applications to allow developers to save time 

and costs by focusing on their application needs. Data processing solutions must 

be robust and reliable to automate device data management in real time. ITTIA 

DB and SQLite offer wide integration support with dynamic APIs for C/C++, 

Python and Web services. This paper examines the solutions of ITTIA DB versus 

SQLite. 

1

INTRODUCTION

PERFORMANCE, RELIABILITY, & SCALABILITY FOR THE EDGE

ITTIA DB and SQLite both offer high performance embedded databases with 

advantages such as: ease of use, flexibility, and data independence. Selecting an 

available off-the-shelf database is a great alternative that allows developers to 

focus on application logic and leave data management to a dedicated software 

library. Embedded and IoT devices have gained significant storage capability in 

recent years, making new software development options possible.

IoT data management at the edge requires robust processing on a limited 

memory footprint, without a database administrator, yet features powerful 

performance. ITTIA DB provides a real time data management platform that 

offers processing at the edge that allows for storing only critical information and 

acting on just relevant data, rightfully deemed, stream processing. SQLite’s 

open-sourced code base does not support real time streaming capabilities and 

developers must create their own strategies for safely grouping, aggregating, 

and filtering large amounts of data at the edge.

ITTIA DB

ITTIA DB offers a device embeddable data management solution with a footprint 

as low as 50KB, offering integration with a wide variety of MPUs as well as MCUs. 

Being an embedded database for the edge, ITTIA DB offers varying levels of 

security including encryption, replication, and a security agent or protocol called 

DB SEAL to protect against malicious queries. Planned support for high 

availability (HA) in ITTIA DB maximizes the protection and availability of data. HA 

includes peer-to-peer replication, table snapshots, and distributed transactions. 

The portable file format used by ITTIA DB is highly maintainable, and the stable 

communication protocols offer easy interoperability with other devices and back-

end systems. ITTIA DB also offers development features including DB Console to 

quickly prototype new schemas and queries before development. This robust and 

friendly data cockpit allows developers to access data safely and remotely from a 

web browser.



2

SQLite offers an embeddable solution with a footprint as low as 300KB. SQLite 

does not offer encryption and provides no guarantees of protection against 

malicious queries, putting the burden on developers to protect against threats 

to their data. SQLite requires developers to implement their own solution to 

work around timestamped values, like converting UNIX timestamps into 

integer values. SQLite relies on a network of developers for maintaining its 

open-source code base and is further supported by a community of software 

engineers with very limited accountability. Developers working with SQLite 

may benefit from the open-sourced community, with limited assurance.

SQLITE

DATA AND TESTING METHODOLOGY

Both benchmarks have been written in C/C++ and optimized for each product 

with equivalent schemas.

DATA MODEL

Table 1: Data Model for Benchmarking

Value Type

Sensor Reading (x) Float

Timestamp (x) Long Integer

Sensor ID (x) Integer

The dataset consists of a day’s worth of data collected from multiple sensors at 

1-second intervals, making a total of 4.32 million entries. Therefore, each sensor 

samples 86,400 values throughout the day, making 3,600 rows per hour. For 

generalization purposes, each sensor is indicated by an ID but can be 

represented by any device sensor, including humidity, temperature, pressure, 

infrared, etc. To further simulate a real-world scenario, the single-threaded 

performance benchmark uses a total number of 25 sensors, of which 20 are 

randomly chosen to ingest and query data from. However, the multithreaded 

benchmark utilizes a total of 62 sensors with 50 sensors chosen randomly to 

ingest and query data from.

TESTING ENVIORNMENT

These benchmarks are performed for embedded developers on both an Intel 

NUC mini PC and an NXP i.MX8 M Mini device with the following 

characteristics:



3

ITTIA DB SQLite

Version 8.1.0 3.34.1

Locking Mode File-locking File-locking

Isolation Level Read Uncommitted Serializable

Access Method C/C++ API C/C++ API

Database Type Time Series Relational

Table 3: Product Configuration Metrics

PERFORMANCE RESULTS

Performance metrics focus on 3 areas: 

• Ingestion Throughput - the number of data entries inserted per second

• Query Throughput – the number of queries completed per second

• Export Time – the amount of time to export a full dataset

SINGLE THREADED

The ingestion of a full dataset is wrapped in a single transaction for optimized 

performance. At each sample interval, every sensor is chosen randomly to 

ingest data from. Both ITTIA DB and SQLite use bindings for batching rows into 

a single transaction. Throughput is measured by the number of data entries 

inserted per second, with ITTIA DB measuring 962,138 entries per second from 

an empty database and 854,177 entries per second from a full database 

(rollover ingestion rate) on Intel NUC. SQLite measures an ingestion throughput 

of 213,914 entries per second. SQLite does not offer an option for rollover 

ingestion. Thus, we did not generate a comparison for that performance.

Insertion

Operating System: Linux 
(Debian 11)

Operating System: Linux 
(Yocto)

Architecture: x86-64 Architecture: aarch64

CPU: Intel i3-7100U (2.40 GHz) CPU: Arm Cortex-A53 (1.8 GHz)

RAM: 4GB (DDR4 – 2133 Mbps) RAM: 2GB (LPDDR4)

Storage Media: M.2 SSD (PCI-E 
4.0)

Storage Media: Class 10 
SD/MMC

Intel NUC NXP i.MX8 M Mini

Table 2: Benchmark Target Environment Characteristics



4

Querying

After ingesting a full dataset, the metrics for query performance can be 

collected. To compensate for discrepancies from background tasks, each query 

is rerun 5 times and the average runtime is reported. Each query selects all the 

data for some sensor at some hour of the day, both chosen randomly. To 

optimize query performance, a primary key is used to index the sensor id. 

SQLite can process 1,250 queries per second on Intel NUC, while ITTIA DB can 

perform up to 5,000 queries per second, with each query processing 3,600 

data entries.

Figure 2. Query Throughput of ITTIA DB and SQLite

SELECT id, timestamp, timestamp_value

FROM table 

WHERE id = 15

AND timestamp >= ‘2020-12-20T03:00:00Z’

AND timestamp < ‘2020-12-20T04:00:00Z’;

Figure 1. Ingestion Throughput of ITTIA DB (with empty and 
full database variants) alongside SQLite

213,914

962,138 854,177

0

500000

1000000

1500000

SQLite
(*Empty)

ITTIA DB
(Empty)

ITTIA DB
(Full)

En
tr

ie
s 

/ 
Se

co
n

d
Ingestion Rate (NUC)

54,314
195,630 176,435

 -

 200,000

 400,000

SQLite
(*Empty)

ITTIA DB
(Empty)

ITTIA DB
(Full)

En
tr

ie
s 

/ 
Se

co
n

d Ingestion Rate (i.MX 8)

1,250

5,000

0

5000

10000

SQLite ITTIA DB

Q
u

e
ri

e
s 

/ 
Se

co
n

d Query Rate (NUC)

345 

3,333 

 -

 2,000

 4,000

SQLite ITTIA DB

Q
u

e
ri

e
s 

/ 
Se

co
n

d Query Rate (i.MX8)

Exporting

Given the small memory footprint of many MCUs, a full export of data is often 

required and within a network of IoT edge devices this can occur frequently. To 

optimize for export performance, a separate index on the timestamp is used to 

export an ordered dataset. In this scenario, ITTIA DB shows a 10X performance 

improvement vs SQLite. Export time for ITTIA DB is recorded at 45 milliseconds 

compared with 438 milliseconds when using SQLite on Intel NUC. An example 

of the query used to export the dataset is shown below alongside the amount 

of time for both products to export a full database. 



5

.

SELECT id, timestamp, timestamp_value

FROM table 

WHERE timestamp >= ‘2020-12-20T00:00:00Z’

AND timestamp < ‘2020-12-21T00:00:00Z’

ORDER BY timestamp, id;

MULTI THREADED

ITTIA DB is configured with multithreading support by default. Just open a 

connection from each thread and begin managing your data. However, with 

two threads competing for resources, their workloads could become 

unsustainable. Shown below is a skyline graph representing all the possible 

workloads that ITTIA DB and SQLite can achieve from two threads, one 

querying data and one ingesting data. With no ingestion taking place, ITTIA DB 

can complete 13,299 queries per second on Intel NUC. By increasing the 

ingestion rate, we see the query throughput fall to 0, with a single thread 

capable of ingesting up to 9,064 timestamps across 50 series every second. 

A green point is used to represent a workload that requires high query 

throughput at the expense of a higher ingestion rate, such as a data 

monitoring application. The red point on Figure 4 represents an ingestion-

heavy workload, where one sensor is sampling data at a high throughput of 

6,200 timestamps per second while another thread can safely query that data 

at a rate of 1,600 queries per second. Each point within the blue skyline 

represents a workload achievable through ITTIA DB’s engine. The grey data 

point depicted in Figure 4 represents a workload that is not achievable through 

SQLite’s storage engine, and still well within the limits of ITTIA DB. This 

performance gap provides the opportunities to save costs and reduce 

hardware limitations or save extra processing time by using ITTIA DB. 

Workloads following the purple mark in Figure 4 will find the need to increase 

hardware resources or limit throughput to achieve their workload. Whereas the 

black data point in Figure 4 represents a balanced workload of 3,114 queries 

per second alongside an ingestion throughput of 3,551 timestamps per second. 

Figure 3. Full Export Time of ITTIA DB and SQLite

438

45

0

200

400

600

SQLite ITTIA DB

M
ill

is
e

co
n

d
s

Export Time (NUC) 

1,585 

139 

 -

 500

 1,000

 1,500

 2,000

SQLite ITTIA DB

M
ill

is
e

co
n

d
s

Export Time (i.MX 8) 



6

SQLite is configured with multithreading support by default, but extra steps 

must be taken from the developer to ensure their database can support 

multiple threads. SQLite supports various levels of transactions, and it is up to 

the developer to ensure their proper usage. To avoid locks, each thread starts 

a transaction immediately upon scheduling. Seen below, SQLite can read up to 

230 queries per second. The performance of SQLite suffers from the overhead 

of multiple threads. A maximum ingestion rate of 147 timestamps per second 

across 50 series makes a total of 7,350 data entries per second. 

Figure 4: Multithreaded Performance of SQLite and ITTIA DB

116, 230

814, 8757

3114, 3551

6204, 1602

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

Q
u

e
ry

 T
h

ro
u

gh
p

u
t 

(Q
u

e
ri

e
s 

/ 
Se

co
n

d
 )

Ingestion Throughput (Timestamps / Second) 

Read vs. Write (NUC) 

SQLite

ITTIA DB

13, 49

135, 2773

525, 903767, 622

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000Q
u

e
ry

 T
h

ro
u

gh
p

u
t 

(Q
u

e
ri

e
s 

/ 
Se

co
n

d
 )

Ingestion Throughput (Timestamps / Second) 

Read vs. Write (i.MX 8)

SQLite Benchmark

ITTIA DB



7

FEATURE COMPARISON SUMMARY

Table 4: ITTIA DB versus SQLite Feature Comparison Summary

Capability ITTIA DB SQLite

Low Footprint 50K 300K

Code Base Proprietary Open Source

Multi-Thread Optimized Basic

API Proprietary Standard

Real-Time Streaming X -

Secure X -

Web browser access X -

Simulation GUI Tools X -

Table 5: ITTIA DB versus SQLite Performance Summary

ITTIA DB vs SQLite

Insertion 4.5X

Querying 4X

Exporting 10X

Multi-Threaded Exponentially Faster

CONCURRENCY AND STANDARDS

A solid foundation for multi-threaded and multi-process concurrency is an 

important part of database performance. SQLite is intended for low-

concurrency settings with a small number of users and processes.

Storage-level locking, for example, disables all database access while 

concurrent modifications are being made. As a result, a more granular locking 

technique often improves performance for a mix of select, insert, update, and 

delete actions. ITTIA DB provides both row-level and storage-level locking 

options, as well as MVCC, whereas SQLite supports only storage-level locking. 

ITTIA DB's scalable locking options provide you the flexibility you need to get 

the performance you need in real-world applications.

PERFORMANCE COMPARISON SUMMARY



8

Because embedded devices require scalability, developers frequently use the 

same database files across different processes and apps. The inability of SQLite 

to scale for a large number of processes causes a significant performance 

barrier. The powerful shared cache design of ITTIA DB, on the other hand, 

keeps the overhead of each database connection to a minimum.

Many database parameters can be tweaked to modify metrics like throughput 

and latency to achieve the greatest possible performance for a specific 

application on a given platform. ITTIA DB provides tuning parameters not 

found in SQLite, allowing developers to accomplish their goals. ITTIA also 

provides the engineering skills needed to fine-tune the database to meet the 

needs of certain applications.

SQL, the structured query language, is used in database systems to store and 

retrieve data in a flexible manner. The SQL standard offers a basic set of 

characteristics that apply to embedded systems and devices while being 

created primarily for back-end server databases.

Instead of following the SQL standard, SQLite provides a permissive SQL 

dialect that is similar to that of several other database solutions. While this 

makes it simple to apply SQL queries created for another product, slight 

changes in behavior can lead to unintended consequences that go unnoticed. 

ITTIA DB adheres to the SQL standard, which ensures that SQL queries have a 

clear, understandable syntax, predictable type conversion behavior, and 

correct query results.

Standards and compliance are vital when building mission-critical systems, not 

just to maintain the database after deployment, but also to prepare you for 

certifying your product. This is on top of keeping up with updates, 

implementing fixes, and ensuring that everything related to the database is 

under your control and technical expertise.

HIGH AVAILABILITY WITH DATABASE REPLICATION

Devices must process data generated by and dispersed across a large number 

of nodes. Most protocols are suited for conveying a node's current state, and 

data replication techniques will greatly benefit querying data recorded over a 

lengthy period of time. To reduce network overhead, nodes must keep track of 

which information has previously been sent. Conflicts arise when numerous 

nodes edit the same shared information, jeopardizing the accuracy of recorded 

data. When mission-critical data is lost, the entire system is jeopardized.

Application developers are solely responsible for communication protocols, 

tracking database modifications, and keeping metadata to coordinate each 

node when using SQLite to distribute data.



9

RELIABLE DATABASE EXPERTS YOU CAN TRUST

ITTIA DB's support for high availability (HA) improves data security and 

availability. Peer-to-peer replication, table snapshots, and distributed 

transactions are among ITTIA DB's high-availability features. Embedded 

applications, for example, use synchronous replication to propagate changes 

in real-time, automatically sending updates to other devices or backup storage 

media. Ad hoc replication allows applications to communicate data 

asynchronously. ITTIA DB protects the application's work from component 

failure after replication is configured.

ITTIA DB's high availability support ensures that data and databases are always 

accessible and available, regardless of whether there is a power outage, a 

catastrophic network failure, or a maintenance issue. Data consistency, data 

redundancy, fallback, and failure detection are all supported by ITTIA DB SQL 

for high availability.

The database's technical assistance is far more involved than in other areas of 

software development and deployment. Database technology is complex, and 

its effective application necessitates a high level of technical knowledge. 

Customers will have instances when they require in-depth knowledge and 

support for a database feature but cannot wait for public opinion to reach a 

consensus. If a consumer requires a rapid response, it may cost more than you 

anticipated. Customers of ITTIA receive personalized, one-on-one technical 

assistance that goes beyond answering technical problems. ITTIA professionals 

work hard to understand each application's unique requirements and to 

determine the most efficient path to success.

Customers don't have to wait to uncover potential dangers and correct early 

design flaws since ITTIA supports an accurate development environment. A 

flawless development process ensures that the product arrives on time and on 

budget. ITTIA will continue to support any changes and upgrades customers 

make to their apps even after the product has been implemented.

ITTIA has always been responsible for developing a close working relationship 

with its customers during the development, implementation, and completion 

of their applications.

DATA TYPES

Embedded databases can hold a variety of data types, including integers, text, 

time, and raw binary data. When data is stored in the database, ITTIA DB 

columns are strongly typed to impose domain requirements. SQLite employs 

dynamic temporal typing, allowing a variety of data types to be stored in the 

same column. Any value can be retrieved as a character string from both 

databases.



10

API, UTILITIES, AND DATABASE COCKPIT

Strong typing is extremely beneficial when dealing with time data. SQLite stores 

time types as strings, but does not validate the value until it is used in a time 

function by the application. ITTIA DB contains the specialized date, time, and 

timestamp types that integrate the two. Before being committed to the 

database, time strings are checked, and invalid values, such as 99:00:00, are 

promptly discarded.

ITTIA DB supports the SQL standard EXTRACT keyword and time interval 

arithmetic for manipulating time values. Individual components of a time value 

can be accessed with the EXTRACT keyword: year, month, day, hour, minute, or 

second. Interval arithmetic allows you to easily add or subtract from a time 

type, as well as discover the difference between two times with any precision 

you choose. To alter time strings, SQLite uses nonstandard formatting functions 

and modifier strings. 

It was built from the bottom up to provide embedded application developers 

with the most significant database functionalities without the need for 

complicated installation or administration tools. It was created with the goal of 

being simple to use and maintain. It is cross-platform, with easy upgrades and 

attractive APIs.

While ITTIA DB and SQLite both have terminal utilities for running SQL 

commands, most applications use an API or a full web server console to access 

the database. Each product has a C-language interface that can be used to run 

SQL queries and perform maintenance chores like backups. Control 

transactions, alter the database schema, conduct ISAM operations on table 

cursors, and disseminate data to other databases are all available with ITTIA DB.

ITTIA DB provides dynamic, static, and forward-only SQL cursors, whereas 

SQLite can only fetch rows from a SQL result set in one direction. This allows 

programs to quickly scroll over query results, which is essential for interactive 

presentations and processing big data sets.

Standard interfaces such as ODBC, JDBC, and popular scripting languages can 

be used to access ITTIA DB SQL and SQLite databases. For developers working 

on a specific platform or programming language, these provide a familiar 

environment. Bindings are also available for a number of scripting languages, 

including Python, Ruby, and Lua, which are frequently used to augment the 

core application.

ITTIA DB Console is a contemporary database cockpit interface that allows 

developers to build, administer, and monitor embedded database and data 

processing processes. From the convenience of a web browser, software 

designers may prototype table structures, generate experimental data in real-

time, and execute SQL queries on specified target MCUs and MPUs using a 

simple visual dashboard.



11

SAFETY AND SECURITY

Developers can use ITTIA DB Console to run SQL statements and queries, 

monitor schema definitions, describe tables and sequences, monitor table 

structures and content (columns, fields, indexes, etc.), monitor and configure 

replication settings for both databases and tables, and import and export data 

in XML and JSON formats.

Using device data processing and management capabilities to ensure data 

integrity and dependability is a good idea. Sensors continuously provide a 

huge volume of data for edge gateway devices to consume in a typical IoT 

data management scenario. Without relying on central storage, an IoT data 

management platform shares, stores, and analyzes data. These high-

performance devices must not only collect data in real-time but also organize 

and make the data available. But what are the fundamentals for using SQLite 

to manage data and share it with other systems in a secure and safe manner?

What are the security characteristics of SQLite? Devices can also publish data 

to any number of nodes over a range of network configurations thanks to 

connectivity. As a result, how should SQLite be used to encrypt communication 

pathways to the device?

CPU, memory, storage, and network connectivity are all fixed resources in 

embedded systems. Because embedded system security mandates the 

protection of sensitive data throughout the device's life cycle, secure storage 

and transmission become vital. As a result, a multi-dimensional security 

technique is required for device internal data management, data protection 

risks, attack taxonomy, and system vulnerabilities.

ITTIA DB has encryption and authentication capabilities, as well as a security 

agent named DB SEAL. While the ITTIA DB Console application allows 

developers and end-users to monitor database activity, ITTIA DB SEAL 

automatically separates databases stored on devices, chooses amongst 

mitigation options, and maintains database contents constantly available.

When data management metrics fall outside of the expected range, DB SEAL's 

proactive monitoring of the data and database will let the device deliver an 

alarm, prevent access, or shut down. This is a virtual agent that monitors 

database responsibilities and metrics in real time and responds when an 

outage or other security problem occurs.



12

ITTIA DB also supports encryption, including the Advanced Encryption 

Standard (AES), to safeguard database communication and data 

transformation. AES stands for Advanced Encryption Standard, and it is a 

standard for encrypting electronic data. This algorithm is used to secure many 

communications.

SCRAM (Salted Challenge Response Authentication Mechanism) is a password-

based mutual authentication technique compatible with ITTIA DB that makes 

an eavesdropping attack known as man-in-the-middle interface harder.

ITTIA DB provides authentication and authorization for client-server and 

distant replication communications. SCRAM provides user and device 

authentication to ensure the security of M2M data management. 

Eavesdropping, unlawful interception, and session high jacking are not 

prevented by authentication. ITTIA DB provides a TLS solution for this and 

supports SSL and TLS security features.

Abuse of operating systems with no privilege separation, buffer overflow, and 

SQL injection are all examples of assaults on software integrated inside the 

device. Control hijacking via SQL is a sort of attack that diverts the normal 

control flow of the programs operating on the device, usually resulting in the 

hacker injecting SQL code. SQL code execution is a method by which attackers 

feed code to an embedded device, such as web scripts and SQL injections, that 

is not native to the device's application.

These attacks result in a variety of issues, including integrity violations, which 

are a regular side effect of new codes on a device's database. This assault 

could result in changes to configuration settings, data, or even firmware 

updates that aren't legal. In extreme situations, the effect may even result in 

the disclosure of sensitive information.

Our security agent is a smart mediator that protects embedded data saved in 

ITTIA DB database files and provides options for a device to operate when it 

detects an attack. DB SEAL isolates databases on devices, chooses amongst 

mitigation options in the event of an attack, and always keeps the database 

contents accessible. Secure remote client/server communications are also 

available with ITTIA DB. Secure machine-to-machine (M2M) connectivity is also 

ensured thanks to built-in encryption and authentication.

Developers who are worried about data confidentiality, integrity, and 

availability should pay attention to database security. As a result, choosing an 

embedded database with the necessary security characteristics is crucial for the 

definition and implementation of secure applications.



13

HOW TO AVOID BECOMING A DATABASE COMPANY

SQLite, unlike many other open-source projects, does not allow community 

contributions. Your key add-ons will not be included in the next supported 

release if your experts offer new development to SQLite that is suited for your 

application. Merging your customizations with each new SQLite version is a 

time-consuming and costly task.

Customers decide the vision for ITTIA DB, and the solution has evolved 

organically to satisfy the needs of embedded and IoT device application 

developers.

When you choose SQLite, you are effectively becoming a database specialist or 

a database firm, however when you choose ITTIA DB, you are relying on 

database expertise.

CONCLUSION

ITTIA DB and SQLite offer edge data processing solutions with dynamic APIs 

for real time data processing on IoT device applications. Both solutions offer 

data independence, but only ITTIA DB offers the ability to leverage SQL for 

stream processing time series data and remote data access via web browser. 

Both solutions offer fast data exports, however, ITTIA offers 10X the 

performance vs SQLite in exporting data and over 4X the ingestion 

performance from a single thread. While both ITTIA DB and SQLite offer the 

freedom to build applications across many platforms, ITTIA DB’s small memory 

footprint of 50KB offers a wide range of platforms to embed your application, 

and leverage SQL for stream processing of time series data.

In today’s cyber hacking world, it is important for companies to proactively 

address security issues and remain informed about security options. We at 

ITTIA focus our efforts on embedded systems data management and our main 

goal is to help our customers by creating a secure database that protects them 

from rapidly evolving threats, vulnerability, and web services. 

In today's age of cyber hacking, it's critical for businesses to handle security 

issues ahead of time and stay aware of security alternatives. At ITTIA, we 

concentrate our efforts on embedded systems data management, with the 

primary goal of assisting our customers by developing a secure database that 

protects them from quickly evolving threats, vulnerabilities, and web services.



14

Although SQLite offers a familiar SQL interface for writing queries and ITTIA DB 

uses a proprietary API, ITTIA DB provides significant performance, footprint, and 

security advantages. Sponsorships, consulting, and paid support customers are 

the main sources of money for the SQLite project. As a result, only those who 

make such a commitment and pay will receive your development team's full 

attention. SQLite does not disclose or share a product roadmap, thus 

developers that choose SQLite are responsible for filling in any gaps. They must 

locate or create the necessary functionality, test it, document it, and ensure that 

it is compatible with future releases. A database has suddenly become a part of 

your development environment. What is the total cost of ownership (TCO) for 

SQLite embedding?

Although the open-source community provides many SQLite add-ons, there is 

no guarantee of continued maintenance or product quality. Third-party 

developers cannot create database features that are incompatible with SQLite's 

general architecture.

For mission-critical applications, maintaining an SQLite-based system is costly 

and unreliable. Many businesses begin using SQLite and, after years of 

significant investment, find themselves in need of database maintenance and 

assistance from a genuine business. At that point, these businesses must 

effectively start over and investigate other database solutions, a more robust 

structure, and SQL statements that comply with industry standards. The decision 

to include SQLite will shift a large percentage of your development emphasis 

away from product creation and innovation and into database management 

and integration.

Because relying on a community is not the greatest practical solution, it is 

becoming evident that this free product will require significant maintenance, 

upgrades, and new feature development resources. As a result, you'll need to 

hire, train, and retain your own in-house database experts to help with the 

development, testing, and maintenance of new database features. As a result, 

you must factor in the additional development and maintenance costs and 

responsibilities.

ITTIA DB is a cost-effective option that allows manufacturers to concentrate on 

application business logic while data management is handled by a dedicated 

software library and database professionals. 



Information in this document is provided solely to enable system and software 

implementers to use ITTIA products. No express or implied copyright license is 

granted hereunder to design or implement any database management system 

software based on the information in this document.  ITTIA reserves the right 

to make changes without further notice to any products described herein. 

ITTIA makes no warranty, representation or guarantee regarding the suitability 

of its products for any particular purpose, nor does ITTIA assume any liability 

arising out of the application of or use of any product, and specifically 

disclaims any and all liability, including without limitation consequential or 

incidental damages. Statistics and parameters provided in ITTIA white papers 

and data sheets can and do vary in different applications and actual 

performance may vary over time. All operating parameters must be validated 

for each customer application by customer's technical experts. ITTIA and the 

ITTIA logo are trademarks or registered trademarks of ITTIA L.L.C. in the U.S. 

and other countries. All other product or service names are the property of 

their respective owners.

Copyright (c) 2022 ITTIA L.L.C. All rights Reserved. References in this 

document to ITTIA products and services do not imply that ITTIA intends to 

make them available in every country.

ITTIA DB vs. SQLite WHITEPAPER 
MARCH ©2022


