
Benefits of Database for Embedded Systems

Table of Contents
Introduction..2

Alternative to Database: Flat Files..3

Features of Database Technology..4

Value of Embedded Database...5

An Embedded Database Inspired by Enterprise Functionality.............................7

Available Solutions...8

Final Thoughts...9

Copyright © 2008-2011 ITTIA, L.L.C.

Introduction
Many developers with a background in enterprise
database are now building software for embedded,
intelligent, and mobile devices. Other developers have
been working building embedded systems for years and
are now encountering the challenges of data
management. This white paper addresses the question
of how to leverage these experiences and effectively
utilize embedded database technology.

Some of the benefits of an embedded database are:

● Relational Database Functionality

● Small Footprint

● Linked Library

● Lower Price & TCO

● Cross-platform Portability

● Shorter Time to Market

● Shorter Sales Cycle

● Ease of Use

Embedded systems, intelligent devices, and mobile devices are distributed with
built-in software developed for a specific hardware environment. These applications
are generally developed within a strict deadline and limited budget. To meet the
deadline and satisfy hardware restrictions, many developers build custom solutions
from scratch, preferring a quick, simple implementation to a scalable one. As the
product line evolves, these solutions can become very complex and difficult to
reconcile. Other developers will search for outside solutions to benefit from and
build on the experience of others.

Data management is a problem now faced by a growing number of embedded
developers. When an application needs to store information, a developer can either
build a framework for data management from scratch, or use an off-the-shelf
database solution. Building a database framework from scratch that is compatible
with the future growth of the application is not a trivial task. Years of work go into
the development of a stable, high-performance database platform with a footprint
small enough to be suitable for embedded devices.

Selecting an available off-the-shelf database is a good alternative that allows

www.ittia.com Page 2

What is an embedded
database?
An embedded database is a
software library used by
application developers to
store data.

The library adds database
features to the application
such as transaction logging,
scalable index algorithms,
and isolated concurrency.

Unlike enterprise
databases, an embedded
database is distributed with
the application and is not
installed separately by the
end-users.

Embedded databases are
especially well-suited for
special-purpose devices
and embedded systems
with limited resources and
a dedicated user interface.

http://www.ittia.com/

developers to focus on application business logic and leave data management to
solutions available in the market. Embedded databases are a unique alternative that
is invisible to the end user, linked directly into the application as an in-process
software library, and requires almost no database administration. This provides the
application all the features of a relational database (RDBMS) without the overhead
and complexity of a traditional database management system. Zero database
administration reduces the Total Cost of Application Ownership as the database is
managed from within the application.

Alternative to Database: Flat Files
New software development is driven by the evolution of hardware. Embedded and
mobile devices have gained significant storage capability in recent years, making
new software development options possible. Previously, most devices stored little or
no data persistently, only synchronizing when docked in a cradle. These devices
typically stored data in flat files, using either a simple text format or binary format
customized for the device's built-in applications.

Flat text files use a simple format that is human readable and loosely structured.
While text files are easy to write and can be created in any text editor, every
change, large or small, usually requires the entire file to be rewritten. This makes
text files especially susceptible to data loss because the entire file is put at risk
every time any data is modified. When a large text file is repeatedly erased and
written to flash memory, the extra wear reduces the total lifetime of the flash
media. Text files also cannot be very large because of the time required to write
changes and because the entire file must be read into memory to efficiently search
for data.

Binary flat files are more versatile because the strict structure of these files makes
it possible to efficiently divide the file into smaller pieces that can be used
independently. But binary files cannot be viewed in a text editor, so special tools
must be developed to use these files outside the application. Binary files provide
some protection against corruption of the entire file, but can still lose data when
changes are only partially written before an unexpected power failure. Binary files
also make it more difficult to store variable-width data.

An application can partially protect against corruption of a flat file by writing to a
new file each time it is saved. The new file can then be renamed after erasing the
old file. However, most file systems will cache the rename operation, effectively
canceling the benefit of this approach.

Flat files also have a limited data management life cycle offering, as devices and
embedded systems are becoming more aware of each other and other systems.

www.ittia.com Page 3

http://www.ittia.com/

This awareness causes data growth and these systems require the capability to
store, retrieve, manipulate, and query data efficiently. Flat files are useful for
limited data storage but have limited scalability and durability.

Most of all, an elaborate flat file storage framework distracts engineering resources
from application logic. Many developers effectively end up building a proprietary
database management system that they do not have time to maintain or fully
optimize.

Features of Database Technology
Database technology aids applications that store persistent data storage in three
important ways: reliability, scalability, and shared access. Embedded databases
accomplish this using features such as transaction logging, indexed search, and
row-level locking.

Transaction logging prevents data corruption when a sudden power failure or crash
occurs. Changes to a database file are grouped into transactions. Transactions are
first written to a separate log file so that if the application is interrupted while
writing changes to the storage device, it can recover the database to a known good
state. Transactions are guaranteed to be atomic, meaning that each transaction will
either finish completely or make no changes at all.

Relational embedded databases organize information into tables, large or small,
that can be quickly searched using B+ tree or similar indexes. The table-driven data
model used by relational databases facilitates interoperability and maintainability
because it is a straightforward format that is compatible with many industry
standards, such as SQL and ODBC. Developers can easily leverage experience
gained from one relational database when working with another.

Databases can also support multiple connections to a database, allowing multiple
tasks to be performed concurrently without interfering with each other. High-level
concepts, such as transactions and isolation, simplify analysis of how tasks interact
and eliminate the need for manual locking of data.

Relational databases provide these key features:

● High performance

● Main-memory and disk-based tables

● Shared access

● SQL

● ODBC

● ACID Transactions

● Multi-table joins

● Automatic locking

● BLOBs (Binary Large Objects)

● Unicode character support

www.ittia.com Page 4

http://www.ittia.com/

Value of Embedded Database
Modern embedded devices are now responsible for storing more data than ever
before. Some devices get an edge on the competition by synchronizing data without
interrupting normal use. Important data must not be lost to corruption caused by a
power failure. For these devices, performance and reliability are critical.

Power failure is an important issue on embedded devices. Many devices are battery-
powered and are prone to sudden power failure. If persistent data is not managed
carefully, unexpected power failure can result in lost data or even corruption,
making all persistent data on the device vulnerable. Database uses transaction
recovery to both protect against corruption and ensure that data is completely
consistent after a power failure. Vendors cannot afford to bring a product to the
market that crashes at a customer's site. For example, if a GPS vendor introduces
a new product that fails after installation, the reputation of the vendor is at risk.

Application code is frequently re-used to expand an existing product line or to
jump-start development of a new product. Using a database gives an application a
consistent architecture for persistent data storage, making it easy to add new
features and migrate the application code to a new environment. Database is a
good long-term investment because it lets applications scale through the entire life
cycle of the application.

For example, many devices are initially designed to store data locally and only
synchronize with other systems as a dedicated task. If such an application is
database-driven, it can use row-level locking to interact with other systems and
share data without interrupting normal usage. Sending and receiving data and
running custom queries is greatly simplified by the database API.

Embedded devices use a variety of processor architectures, and ARM is one of the
most popular. To improve efficiency compared to other architectures, ARM
processors require integers in memory to be aligned on a word boundary. ARM
processors can also be configured to use either big-endian or little-endian byte
order. Features like these improve the performance and flexibility of software
written for ARM processors.

As a result, the memory layout of a data structure, such as a C struct, is
determined by the processor architecture. So it is not possible to copy data directly
from memory on one processor architecture to memory on another processor
architecture. Instead, the processor architecture must be recognized so that data
can be transformed into an architecture-independent format if it is to be shared
between devices and other computer systems.

If data is copied directly from memory to a binary flat file, it is not easy to open the

www.ittia.com Page 5

http://www.ittia.com/

file on another architecture, such as the x86 architecture used by desktop
workstations. An embedded database that understands the structure of data can
automatically perform the necessary conversions when a database is shared
between devices, either by copying the database file itself or using network
communications to access the database.

Many devices, such as mobile inventory management devices, are used to
manipulate a subset of data from a large back-end database server. An embedded
database on the device allows this data to be saved reliably in a format that is
easily shared with a back-end server.

An out-of-the box database solution also reduces total cost of ownership and
provides a shorter time to market because the developers can focus on core
application development.

Features like these have been available for decades in enterprise RDBMS (relational
database management system) products, but the footprint requirements and cost of
these monolithic systems make them impractical for embedded systems and
devices. Enterprise databases are designed to support access from thousands of
users at once and balance load across multiple server machines, requiring
sophisticated management and administration. These products also include many
deprecated features required to support decades of legacy applications and are
optimized for servers with gigabytes of RAM and large hard disk arrays.

Embedded databases are designed to run in resource-limited environments. The
database can be embedded directly in the application, completely hiding the
database from the end-user and greatly simplifying management and maintenance.
With a code footprint less than a megabyte, an embedded database can easily fit on
an embedded device and can even be customized to satisfy strict footprint
requirements. Embedded databases use algorithms that are efficient for small-scale
applications, but that easily scale to store a large amount of data.

www.ittia.com Page 6

http://www.ittia.com/

An Embedded Database Inspired by Enterprise Functionality
Just as enterprise developers once recognized a need for formal data management
on mainframe servers, embedded/device developers are discovering new
requirements that demand a robust RDBMS for local data management. As a result,
these developers have begun searching for a data-driven storage engine. Many of
these software developers require their applications to locally store, manipulate,
and retrieve data, as their systems can no longer afford to be disconnected.

Many embedded database solutions started as
a consulting project for a single application
that was then repackaged for use in other
applications. ITTIA DB SQL was developed
from the ground up to recognize and solve
issues with data management on modern
embedded systems and devices.

Before developing ITTIA DB SQL, engineers at
ITTIA interviewed embedded and enterprise
development experts to identify their common
requirements for data management. From
this research, ITTIA learned that the most
important issues facing embedded developers
are compatibility, due to the diversity of
hardware and software environments
available, and small footprint. To ensure
broad compatibility, ITTIA DB SQL was
designed as cross-platform RDBMS using the
standard relational data model. To
accommodate footprint restrictions, careful
attention was paid to algorithm selection and memory utilization.

ITTIA DB SQL stores data in a portable format that can be accessed directly using
table cursors or with SQL queries. A database can be stored in a local file, or shared
across a network. ITTIA DB SQL is also modular, allowing features such as shared
access and even the SQL engine to be omitted to reduce footprint. Many embedded
applications do not need the overhead of these features and can save space by
leaving them out.

An application's storage requirements often change over time, requiring updates to
the database schema. Dynamic schema alteration, supported by ITTIA DB SQL,
allows applications to add and remove tables and columns to a live database. And

www.ittia.com Page 7

http://www.ittia.com/

because the schema can be inspected at runtime, the application can use the new
schema without being recompiled.

For best performance and minimal wear on storage media, ITTIA DB SQL uses a
buffer pool to control memory usage and prevent fragmentation. This accountability
for memory utilization is critical in embedded systems.

Available Solutions
Some database solutions provide shared access to a database by locking the entire
database file. File system locks operate on an entire file at once, so when a
transaction begins to modify the database, it must obtain exclusive access to the
entire database file until the transaction is finished. This is not a problem when
sharing is infrequent and every transaction only involves one or a few rows.
However, one long-running transaction, such as a synchronization task, can block all
other activity in the database, even when there is no real conflict.

ITTIA DB SQL can use either storage-level
locking, or a less restrictive locking
technique: row-level locking with isolation
levels. The database automatically tracks all
rows that are read or modified in a
transaction. At the highest level of isolation,
known as “serializable,” rows are locked in
such a way as to prevent all possible conflicts.
And for most simple transactions, the
isolation level can be reduced to minimize
locking even further. This ensures that a
transaction is only blocked when it would
create a conflict with another transaction
already in progress. In addition, an entire
table can be locked manually.

Applications share access to ITTIA DB SQL
databases by opening a separate connection
for each task. Within a single process, each
connection can access the database file
directly. Multiple processes can share a
database file by connecting to a server
process through shared memory or TCP/IP. Regardless of how many connections
there are or how they are made, each database file uses only one page cache.

Some databases use dynamic run-time typing, which means that the type of a

www.ittia.com Page 8

http://www.ittia.com/

value is effectively only checked when it is read from the database and used. This
flexibility is useful in prototyping, before the application's requirements are fully
formed, because it allows data to be written to the database without much regard
for how it will be used later. Production code, however, must be carefully audited to
ensure that type mismatches are not possible or can be dealt with in a reasonable
way. Dynamic typing works well with languages such as PHP that support manifest
typing natively.

ITTIA DB SQL uses static typing, where type information is stored in the database
schema as part of a table's description. Each column can contain only a specific
type of data. This ensures that type mismatch errors are identified early, when
there is the best chance to successfully fix the mistake. This is important when the
database is shared between applications that are developed separately, as the
database schema forms a contract by which all parties must abide.

ITTIA DB SQL exposes a C API that supports SQL queries, but it also provides a
framework for direct table access. Many operations, such as inserting rows with
dynamic values, are easier to express and have better performance when direct
table access is used. ITTIA DB SQL also includes an object-oriented C++ API.

The terminology used by ITTIA DB, both in the API and documentation, should be
familiar to enterprise database developers. Some embedded database products use
unusual terms for common concepts, which forces developers to learn a new way of
talking about databases.

Database files are divided into pages, which are the basic unit of I/O. Related data
is often clustered together on one page, especially in indexes, which boosts
performance by minimizing I/O operations. Recovery logging is greatly simplified by
aligning the page size to the size of disk blocks.

For most write transactions, ITTIA DB will only append to the recovery log, without
updating the database file itself. On disk media, this greatly improves performance
because the head does not need to move. On flash media, this avoids unnecessary
erasure, which both takes time and wears the storage media. Because ITTIA DB
supports undo/redo logging, it can achieve this result without imposing a limit on
transaction size. Databases that use only undo logging must always write to the
database itself after each transaction, and database that use only redo logging must
limit transactions to the available cache size.

Final Thoughts
Embedded database gives software developers the edge they need to differentiate
themselves from the competition, deploy sooner, and cut costs. Every application
that manipulates information must face at least one of the problems addressed by

www.ittia.com Page 9

http://www.ittia.com/

database: reliable persistent storage, high-performance search, and safe data
sharing. An embedded database library, like ITTIA DB SQL, is an out-of-the-box
solution to all of these common data storage problems.

Database simplifies application development. Rather than building separate
solutions for each of these problems, the application developer uses a standard
framework for accessing and modifying data. Furthermore, reconciling these
features with each other in a single application is not trivial and can become a great
distraction to developing the business logic of the device.

ITTIA stands behind its database technology with guaranteed support through all
phases of product development. ITTIA's experts provide indispensable advice during
planning and design that gets development started in the right direction from the
very beginning. ITTIA's training programs give developers an edge up with a
thorough introduction to the capabilities of embedded database and best
development practices. In application development, ITTIA supports customers with
direct problem tracking and resolution. Support even extends to the deployment of
the device and application, ensuring a smooth delivery and market adoption.

By cutting out a large amount of software development work, an application using
an embedded database can be developed faster and at a lower cost compared to
the same application without a database library. Software developers do not need to
sacrifice performance in critical algorithms, because tables and indexes can be
accessed directly through the C API. And with the database supporting standard
features like SQL, the application can offer features that would otherwise be
impractical to develop. Database makes it possible to rapidly develop feature-rich
applications that will be able to scale to meet the demands of the future.

www.ittia.com Page 10

http://www.ittia.com/

About ITTIA
ITTIA provides software and services for data management, offering standards,
ease of use, and flexibility to our customers. Benefits of selecting ITTIA’s
technologies include leading-edge software, comprehensive documentation,
scalability, efficiency, exceptional performance, and low total cost of ownership.
Learn how customers such as Freescale Semiconductor, Panasonic, Puget Sound
Energy, Fresenius, Boeing, and others have valued from ITTIA by visiting:

www.ittia.com

www.ittia.com Page 11

http://www.ittia.com/
http://www.ittia.com/

How to Reach Us

Home Page:
www.ittia.com

e-mail:
support@ittia.com

USA:
ITTIA
1611 116th Ave
Bellevue, WA 98004
425-462-0046

Information in this document is provided solely to enable system and software implementers to use
ITTIA products. No express or implied copyright license is granted hereunder to design or implement
any database management system software based on the information in this document.

ITTIA reserves the right to make changes without further notice to any products described herein.
ITTIA makes no warranty, representation or guarantee regarding the suitability of its products for
any particular purpose, nor does ITTIA assume any liability arising out of the application of or use of
any product, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. Statistics and parameters provided in ITTIA white papers and data sheets can
and do vary in different applications and actual performance may vary over time. All operating
parameters must be validated for each customer application by customer's technical experts.

ITTIA and the ITTIA logo are trademarks or registered trademarks of ITTIA, L.L.C. in the
U.S. and other countries. All other product or service names are the property of their
respective owners.

Copyright 2008-2011, ITTIA L.L.C. All rights Reserved.
Rev 4

www.ittia.com Page 12

http://www.ittia.com/
mailto:support@ittia.com
http://www.ittia.com/

	Introduction
	Alternative to Database: Flat Files
	Features of Database Technology
	Value of Embedded Database
	An Embedded Database Inspired by Enterprise Functionality
	Available Solutions
	Final Thoughts

